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I. CASE I: ON AXIS ' .

1. Traveling Wave Review

The traveling wave electron accelerator is not simpler than the standing wave
machine, but it is better understood. So, with the object of understanding, let us
look at the first section of a traveling wave accelerator where the wave velocity B
is less than 1. .

According to the equations derived in the Appendix, after Slater,1 the momentum-
phase diagram is shown in Fig. la. The phase angle, @, is here defined as the angle
by which the electron leads the crest of the traveling wave, and P is the momentum of
the electron. Apparently, Slater chose to call phase zero when the particle is /2
ahead of the wave crest because there is symmetry about the line ¢ = m/2 with a trav-
eling wave. )

In accordance with Eq. (8) of the Appendix, a function

el
2m

H+

£(v) 'sin @ = E(P) - BP = £(P) , (1)

can be defined where H is the Hamiltonian, o is the field intensity, and E and P are
the energy and momentum of the electron, all in dimensionless units.

Figure 1b shows the relationship between ¢ and P through the function f. The
shape of the curve depends only on the wave velocity B. The minimum value of £(P)
allowed by

£(P) = E(P) - BP

(1a)
E-P-=v-B=.O s

where ¥ is the reduced particle velocity, is £1(Py) = 1/Ey, where Ey = (1 - BZ)-;é and
Py = PE; are the.energy and momentum.of a particle moving at the traveling wave veloc-
ity.. ’

The maximum and minimum values of f£(¢), being f, and f3 respectively, allowed by

- o
f(p) = H + 75 Sin ©o (1b)

are fp = H + «/2m, and f3 = H - «/2m, where .H is determined by the initial condition
through .

*
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If H is less than its critical value, H, = 1/Ey + o/2m, £3 < £1, and the orbit of
the particle is like orbit 1 of Figs. la and 1b. If H > H,, f3 > fy, and the orbit is
like either orblt 2 or 3 of Fig. la, depending on the 1n1t1a1 conditions.

Figures 2 through 5 show graphs plotted by computer. They are segments of the
closed orbits of Fig. la. The lines labeled 0 - 0, 1 - 1, etc. show the locus in
phase space of electrons at a given distance along the accelerator. The momentum scale
was chosen to show desired features best; a constant times log(l + 2P/mc) is plotted.
In Fig. 2, fourteen electrons start out along line 0 - 0 at 80 keV. The four starting
with @ = 140° were approaching P.= 0, and it was not considered fruitful to follow them
further. The line 1 - 1 shows where the remaining ten electrons were after passing
through 1/16 A, Between the two smallest orbits are contained all the electrons in-
jected between 70° and 110°. If extracted at v = B, they would span 7° in phase; if
extracted at the end of a wavelength (on line &4 - 4), they would span 8%, It is also
interesting that the electrons injected between 60° and 90° could be extracted in a 2°
bunch at the end of 1 A. Figure 3 is for half the accelerating field, Fig. 4 for a
more rapidly traveling wave, B = 0.9, and Fig. 5 for 8 = 1.0 (P ==).

' *
2. Standing Wave at Low Energy

- At low energies, the trajectories in P - ¢ space of particles which are captured
in standing wave linacs (1) cross and recross, (2) have kinks every half wavelength,
(3) decrease in momentum at first, and (4) slip about twice as much in phase as one
would expect from the corresponding traveling wave case.

Figure 6 shows the orbits in P - ¢ space for particles accelerated by a standing
wave. The graphs do not close on themselves; they do cross. There is hardly a percep-
tible kink in the curves at the end of 1 A ("2" on the graph) because it just happens
that v very nearly equals B at this point so that the curves are vertical.

Figure 7 gives a very much enlarged view, for 2.5 wavelengths of standing wave
accelerator, of a very small segment of a locus such as 4 - 4 in Fig. 4. The locus is
the ends of orb1ts such as those at "10" in Fig. 6. An input of Ap of 20° has been
bunched to 1° (1 - cos 0.5° = 0.4 x 104) with an energy spread of 0.064 mc? (1.5% of
present energy, but 0.3 x 10~ -4 of 1 GeV). A 9° initial Ayp (69.5° - 78.5°) would give
0.15% .of present energy. The curve for 79.9 kV shows that the ¢, of the "bunch" is
fairly independent of ¥,, but the point "B" is where "A" would move for 79.0 kV and
indicates that a variation of the 80 kV by 1.27 would affect the resolutloz to the ex-
tent that the phase spread contribution to the energy spread would be ~ 10

In order to establish at least the direction of the gradient of good energy reso-
lution in the multidimensional space of buncher design (o, 81, By, ... length), a large
number of calculations were made. Some results for a half wavelength of standing wave
accelerator are presented in Fig. 8 whose straight lines attest to the roughness of
approximations made in comstructing the figure. The trends, however, are not approxi-
mate: (1) good bunches are fairly independent of B; (2) low field strengths give better
bunches. Two quantitative conclusions were drawn: (1) since a AE/E of 1 X 1074 is the
goal, @ < 2 would unnecessarily sacrifice fast acceleration where it is most desirable
(to arrest transverse velocity); and (2), B = 1 eliminates problems that might arise

*
As used herein, o is the effective field. 2¢ is the maximum field on
standing wave axis.
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from other choices. (For instance, B = 1 makes the accelerating field of the funda-
mental frequency independent of the distance off axis.)

The calculations leading to Fig. 9 were made in order to design a combination
buncher and injector section for a superconducting linac. WNotwithstanding the possible
advantages of B = 1, the real advantage of increasing the kinetic energy (for zZ = 2.5 A,
from 1.6 to 2.6 MeV) by going to B = 0.95 was considered worthwhile. The approximate
length was determined by how much was needed to become relativistic.

Figures 10. and 11 indicate how the bunch is formed. Continuously injected elec-
trons would be represented at the moment of injection (Z = 0) by the line with unit
slope. The dotted lines on Fig. 10 show where the electrons are in the first half
wavelength when the fundamental rf electric field changes sign. Electrons with 160°
< o < 180° are stopped at Z » A/8. Electrons with -180° < @y < 100° stop before A/4
even though they were initially accelerated. Electrons injected at -100° (180° from
bunch) would be stopped at Z =~ A/4 and ¢ ~ 180° and presumably would be rejected with
80 kV back at the gun. With continuous injection, 5% (A®, = 20°) will come out in a
tight bunch, 25% will come out badly spread in phase and energy, 35% will stop before
A /4, many of which may be "rejected," but the other 35% get beyond A/4 and it is most
likely that they will end up as heat in the cavity wall. TFigure 11 for B = 0.95 shows
the bunch gaining on the wave between Z = A and 2.5 A. It is by proper choice of o,

B and length that the bunch ends with ¢ - 0 for maximum energy gain; it is not necessary
for good bunching.

There appears to be an understandable characteristic of the bunch. It passes
where (A/4) the field is maximum when (¢ = 0) it is maximum.

3. Standing Wave at High Enefgy

After the energy of an electron is a few MeV, the effect of the backward traveling
wave component on the longitudinal coordinates of an electron is completely negligible
in a standing wave accelerator.

II. CASE II: OFF AXIS

1. Introduction

In a superconducting accelerator where high energy resolution is possible, the
radial motion is particularly important bécause of its effect on monitoring and control-
ling the energy of the beam.

Figure 12 is an attempt to show the whole problem at a glance. Radial momentum
is plotted against distance off axis. The circle represents a set of particles as they
are injected into a short section of accelerator. The dots trace the path in this
phase space of a particle started at -unit distance off axis. The set of particles at
the middle of the first cavity is represented by the fat ellipse, but the dots show that
large excursions of momentum have occurred. At the end of the first cavity the set is
represented by the long thin ellipse. If the dots were continued they would fill in
most of the space between the dots shown. At the end of five cavities, the set is re-
presented by the remaining ellipse. Note that the ellipses represent a set of particles
at certain stages of acceleration: the dots represent the orbit of one particile.

Figure 12 represents radial motion in the first accelerator section. It is com-
plicated and will be treated last.

First, the .case will be treated in which the particle has its energy much greater
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than its rest mass and much greater than the energy gained per wavelength. Next the
restriction on the energy gradient will be dropped, and last, an injection section
will be considered.

Definitions of symbols are given in the Appendix.

2. Very High Energy, Relativistic Particles

The equation of radial motion is

;—z(Y%)=‘2narsin£mz, @

which is linear in r, r’, and r” so that all solutions may be scaled. The equation of
axial motion integrates to

sin 41z ) ) (3

.= ( z - bt

where a small liberty has been taken with the'constants of lntegratlon by requiring
that z, = yo/@ and z, is integer or half integer. )

The sine in each of Egs. (2) and (3) is the result of the backward traveling com-
ponent of the standing wave. The contribution to the radial force from E and v X B
identically cancel in the forward traveling component.

Combining Eqs. (2) and (3) and the definition of radial momentum, and letting

= 4z
dP _ _r _. '
I 5 sin x R (4a)
N dr P

dx x - sin x ‘ (4D)

Equating both the sines in Eq. (4) to zero, the traveling wave solution is found
to be

P=P_ , - (5a)

r P InZ+r . (5b)
o X o .

(o]

Using this r as a first trial solutiom, and integrating by parts to increase the
power of x-x,/x, a solution correct to the first order in (x - x,)/x was found:

_ cos x , x _sinx 7 [ 2cosx+1 X
P=P [; + - 1n - v ]'+ r el s— In
o o
cos x - 1  sin x'< _ cos cos x ) 1 .
+ > + el . (6a)
_ X _ 1 x| sin x
r = Po [ln % ]-+ T, [i 5 In X, + e ] . (6b)

None of the terms in Eq. (6) is a result of the sine in Eq. (4b); that is, the intra-
cavity change in mass is not a first order effect.
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As indicated in Pig. 12, the gyrations within a cavit§ may be large compared with
the net change across a cavity which is of chief importance. Letting x - x5 = 2m, and
Xy = 2mn, the effect of the (n + 1)th cavity is given by the difference equations:

~

1 3 '
Pn+ 1) - P(n) = a P(n) - Bn r(n) s ‘ (73)
r(+1) - r@ = Pa) - 3= x(n) (7b)
r(n o on T(0 s
which again are good to first order in nhl.

A solution which satisfies Eq. (7) to first order in n-1 is

]

P(n)
r(n)

/3 B sin (L +0) - 3(8)"% rosinl (8a)

2 /2 P sinL + /3 r, sin (6 - L) , (8b)

- -%
where L = (8) % 1n n/n, and sin .6 = (3) ~.

Equation (8) is plotted in Figs. 13 and 14. The solid triangles on each curve
indicate the points up to which the curves were checked against a very accurate computer
calculation that started with Zy = 100 A. The n's of Eq. (8) can be interpreted as en-
ergy. The particle will cross the axis after it has increased its energy to 5.7 times
its initial energy if its initial radial momentum is zero. From the time the particle
crosses the axis, its radial momentum will continue to increase until its energy is in-
creased by a factor of 15 and its radial displacement will increase until its energy
is increased by a factor of 85; it will recross the axis again at energy factor (85)°.

From the equations, it appears that the maximum radial excursion will be minimized
if Po = % r,, and further that a complete cycle of_radial motion will be made every
time the energy is increased by a factor of 5 X 107.

Comparing the standing and traveling wave radial motion over an energy increase
of a factor of e,

Standing Wave Traveling Wave
3, .3 i,
P=2% "8% P=7
_ 1
r=°? +5r r=P +r
o 2o o o

it appears that there is a significant difference from the Lorentz contracted drift
tube analogous to the traveling wave accelerator.

As suggested by the eigenvector found during the solution of Eq. (7), let
Q=2/2/3p,

Q=0Q, cosL+ 2 Q, - /3 r ) sinL , (9a)

r= (3 Q - /2 r ) sin L + r cosL . . (9b)

The maximum values of Q and r are each equal to K which is a constant of the motion
and K2 = 3Q2 -2/6 Qr + 3r2. If the axes are rotated 45° and K is magnified to unity,

=9+ =Q -
X 77 K and y 77 K
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x = x_ cosL+ 3+ /2) y, sin L N - - (10a)

|

y=- (3 -/2) x sin L + v, cos L . (10b)

From this, the constant of the motion is found to be
x2 2
L =1

+ =
1+/2/3 1 -/2/3

The ellipse found in Eq. (11).;5 shown in Qr space in Fig. 15; its area is nKzA/3.
This ellipse is a trajectory as contrasted with the ellipses of Fig. 12 which represent-
ed sets of particles.

. . (11)

3. Relativistic Particles

If Yo is not much greater than w, the analysis of the previous section does not
apply, but this can only be the case over only a few wavelengths because vy = oz for
relativistic particles.

To investigate this, computer calculations were made over one-half wavelength and
the results plotted ip Fig. 16. 1In a drift tube, the particle represented by the dot
on the circle would have moved directly to the dot at its right. If z5 = 10 A, the dif-
ference is slight. TIf z2g = A, the difference is significant.

The simple conclusion is that for z > 10 the analysis of the previous section is

adequate, for z > 100 it is as good as the computer, and for z < 10 the computer should
be used.

4., The Injector Section

Consideration of the injector section is not complete, but some calculations have
been made. The tentative conclusion is that, in first order, even this section acts
like a drift tube if the gyrations within a cavity are not considered. Figure 17 shows
the effect of acceleration from 80 keV to 100 MeV. In the injector section, i.e. during
the first 2A, besides the drift tube effect of tilting the ellipse forward there is a
slight defocusing in that the absolute values of all momenta are increased by about
30%. In the next 10 A, after the axial phase is set to zero, the particles (two of
which are represented by dots on the curve) move much as would be expected from the an-
alysis of the high energy section. The next two sections of 20 A each continue to ac-
celerate as expected. If a 20° axial phase bunch had been injected, the set (in radial
phase space) that was first to be injected (10° early) and the set last to be injected
are shown separately at 52 A. Clearly, the radial phase space problem in a standing
wave injector is soluble.

Figure 18 shows the  results of some calculations on another injector section. To
get a feeling for the problem the question was asked, "What is necessary to get a paral-
lel beam out of the injector?" Electrons were put in A/60 off axis and the answer de-
pends strongly on axial phase. For an electron in the middle of the axial bunch, the
answer is that it should be aimed at a point on the axis f = 1.8 A into the accelerator.
For those with different axial phase, the answer is different, as shown in the table:



P - cPo f/)\.

10 0.75
5° 1.0
0 1.8
-5° 2.7

-10° ©

For a given r in the high energy section, the radial phase space enclosed in an
orbit is minimum if P, = Er o’ which is to say that it should be diverging with an
angle of © = ry/2z5. In the case of the injector section of Fig. 18, this would re-
quire 8 = 3 mrad rather than 8 = 0 which was used as a basis for the above table.

This does not conclude the work on the injector, but it does show a way to the
solution of radial phase space problems.

APPENDIX
I. ONE DIMENSION TRAVELING WAVE
Defining Bc, A, and F to be the wave velocity, wavelength, and maximum electric

field intensity in the accelerator, respectively, and giving other symbols their
usual meaning,

dp z - Bet )
at qF cos (mo + 2m ) s

(a-1)
dz
dt

which can be put into the form

S - B e oo (£

d(z/A) _ v

d(Bet/A)  Be
This immediately suggests simplifying to dlmen51on1ess variables. 01d symbols are
primed:

Al

2L _, AR

A ‘ c v

P Bet’ _

me —P }\ =t . (A2)
E gFh

7= E 5 = o

mc mc

The accelerating field parameter, o, is the electric field intensity in units of
particle rest masses/q (0.511 MV for electrons) per wavelength. Now the equations
can.be written more simply:

gg

= E cos [w +2m(z - t)] 3 — = %’ . (A-3)
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Defining the phase
P =9 +2m(z-t) , (a-4)
which is the amount by which the particle is ahead of the crest of the wave, then
do _ (_E) -
as 2 {1 v . (A-5)

Now Eqs. (A-3), (A-4), and (A-5) can be combined:

P _ o o

dz v % @

dpP _ o _

dp  2m(v - B) o8 ¢ , (A-6)
o

(v - B)dp = S €08 @ deo

The equations required from special relativity now have particularly simple forms:

E2 = P2 + 1
, =B_dE 47
E dp
Equation (A-6) is easily integrated to give
E-BP=-=sing+H (A-8)
27 N4 ’

where H is the constant if integration and can be shown to be the Hamiltonian.1

" The complete solution needs another equation to show the relationship between
z or t, and P, E, or 9. Such an equation is (A-5), but it has not been integrated in
closed form.

IT. ONE DIMENSION STANDING WAVE

Going back to Eq. (A-3), we can see that the addition of a wave traveling in the
opposite direction will give a standing wave

%% = % cos [wo + 2m(z - t)] - % cos [o + 2m(- z- t)] (4-9)
= %? sin (2mz) sin (2wt - wo)

dz _ v

dt B

Because of the need to integrate the equations over exactly.the same length of
accelerator, so that the exit phases be comparable, the equations used were changed
to have z as the independent variable
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dp _ 2 _. X -
i - g oim (2mz) sin (2nt. qz)
de _ B

dz v

(A-10)

These are the equations for a m-mode standing wave accelerator on the axis of its

cylindrical symmetry.

Phase is defined the same as in
Eq. (A=4). ’

III.

the traveling wave case,

CYLINDRICALLY SYMMETRIC STANDING WAVE

Returning to the conventional meaning of symbols for a moment,

FA

(a-11)

-®)

E, = Ty
A, = Y.‘w sin (kz) J _(yr) sin (wt ~ @)

2 L 'n ) o

E_ = FA

by T
A=-Zwl{-cos(kz)J(r)sin(t- )

T nvy 1 Y ® %
By = (F/c) Ag

= .-U-')- 3 ‘

Ay an ve sin (kz) Jl(yr) cos (wt
2+l = e

k=21@2n - 1)/A , n-=

Equations (A-11) describe the field at a particle
accelerator which has planes of symmetry at the center
symmetry at the ends of each wavelength.

1, 2, 3, ....

in a cylindrically symmetric
of each wavelength and anti-

Neglecting the effect of the transverse velocity on the relativistic mass of the

particle, the equation

can be reduced to one in the z direction,

dp _ .
it - qEZ + rBe s
and one in the transverse plane,

d

39 H
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where R is the radial unit vector and v is the velocity in the z direction, as before.

. . 2
Still using conventional notation, E/c

Invoking some fundamental mechanics where R ‘and 8 are unit vectors,

P = ;E/c2

T

i

d

2
Ls-]
%)

e
1

=
r

¢ = TE + 1B

fﬁ + ré@

(F - 8% R + (226 + £6) B

Combining (A-14), (A-15), and (A-16),

@ - oh £
c

In addition to the simplifying definitions (A-2), add

To eliminate the second order derivatives, define

Equations (A-7), (A-13)
(A-11), and (A-18), to:

+

’
X

B T o
cz qEr qu6 ; (216 +.r6)E + r6E = 0

=r

ol|z. ol

is the relativistic particle mass, and

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

» (A-17), and (A-19) reduce, with the definitions in (A-2),

= ZQ(AZ + SAS)

I
< fw
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In accordance with definitions, the arguments of the auxiliary functions in (A-11)
can be somewhat simplified:

N
Az =an sin (2) JO(R) sin (T - cpo)
1
= I, ®)
Ar = - 27r Llwn(Zn - 1) cos (2Z) R sin (T - wo) (A-21)
1
< 3 ® ~
Ae = 2m Br L ¥n sin (2) R cos (T - wo) ’
1
where
Z=2n(2n - Vz
R=2nvV g2 - (n-12 r
T = 2mt

By computer, the evaluation of the functions (A-21) and the integration of Egs. (A-20)
are  straightforward.

The coefficients w, can be obtained in theory from the Fourier apalysis.of a known
field., The coefficients actually in use are obtained from T.I. Smith“ who estimated
them by numerically solving Maxwell's equations for the accelerator cavity. The first
few coefficients are shown in the table: :

n w
n

1.0000
-0.0137
-0.0106
-0.0014
+0.0002

(5 S B S

2. T.I. Smith, private communication.

- 89 -



¢ o

Fig. 1. Orbits in. phase space, traveling wave accelerator.

5.000 |— ¥o = LI6
a =2.68
3200 — B =08
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~
Q.
0611 —
2 0 :
0.246 |— . .
: |
) | I | |
0 40 80 120 160

¢ (DEGREES)

Fig. 2. Computed orbits in phase space, traveling wave accelerator.
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o =116
3.200 e =134
‘B =080
1.870 L, Z = /16
2,2 = \/8
o 1.160 3,Z:=\/2
§ 4,z = 2)
0.611 0
0.246 —
| 1 L x
0 40 80 120 160
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Fig. 3. Computed orbits in phase space, traveling wave accelerator.

4
5.000 {— Yo = 1.16
a =1.42
3.200— B =0.90
A
3 LZ B A/16
1.970— 3 2,2 =\/8
3,Z =\/2
o L.160— 4,Z = 2\
£ .
~
o
0.246 —
|
| | | I |
0 40 80 120 160
¢ {(DEGREES)
Fig. 4. Computed orbits in phase space, i:raveling wave accelerator.
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|
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Fig. 5. Computed orbits in phase space, traveling wave accelerator.

P/me o %* 16
5.000— a =142
B =0.90
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2,Z=X
1.970 — 3,2=3/2)
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1.160 [— 10,Z=5)
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061l [—
0.246— )
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- 2'0 ? 2|0 49 6.° 89 lOIO 12? i PHASE‘

¢ (DEGREES)

Fig. 6. Computed orbits in P - © space, standing wave accelerator.
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Fig. 7. The bunch of electromns at exit of 2.5 A standing wave accelerator section.

EFFECT OF FIELD STRENGTH ON BUNCHING IN ONE CAVITY

PARAMETER IS AE/E x 104
L

™
0.3

0.9

0.8

a (mc2/e))

Fig. 8. Effect of o and B on bunching.
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STANDING WAVE ACCELERATOR

5—
BUNCHER SECTION
ENERGY vs DISTANCE
a=2mec2/ex
B=WAVE VEL/c
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. SYE
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2_..
' b
o ] | | |
0 | 2 3 4
/X
Fig. 9. KE vs Z-in buncher section, standing wave.
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STANDING WAVE ACCELERATOR
CURRENT PHASE vs INITIAL PHASE

a=2mc2/eh

Yo" 1116
n=4
B =1.00

PHASE

-100

- | | | |
-100° 0 '80° 160° 260
INITIAL PHASE

Fig. 10. Bunch forming in standing wave accelerator.
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STANDING WAVE ACCELERATOR
CURRENT PHASE vs INITIAL PHASE

a = 2mcZ/e)
Yo- l.16
n=4
B=0.95

PHASE

-100°

| I | |
-100° - 0° 80° ~ 160° 260°
INITIAL PHASE

Fig. 11. Bunch forming in standing wave accelerator.
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Fig. 13. Radial motion of high energy particles in standard wave accelerator, r, = 0.

L . 0
o| 10 100
log E/E,

Fig. 14. Radial motion of high energy particles in standard wave accelerator, P0 = 0.
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Fig. 15. Radial phase space trajectory in standing wave linac.

2
Fig. 16. Sets of relativistic particles in radial phase space, E ~ MoC
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Fig. 17. Set of particles in radial phase space.
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Fig. 18. Lens property of injector section.
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